
@(z) ----- V - ~  V ]  ---y2 1 arctgyz--arctg ~ ] T ~ -  / -v" 

V 1 +. v" ~ -  V f i  - 1 ] 1 =~ 
- - v  1 ?2z~ j ,  z~= t g - - .  (3.3) 

V 2a 

In Fig. I, the variation in the temperature drop T + -- T- (referred to q) along the cracks 
is shown for a = ~/2 and b/~ = 0.25 (i), 0.5 (2), 0.75 (3), 0.9 (4) for 0~ x/b ~i. 

NOTATION 

T +, T-, values of temperature T at the left-hand and right-hand edges of the inclusions; 
4, current function; W, complex potential of temperature field; ko, thermal conductivity of 
inclusions; k, thermal conductivity of body; Fn, smooth line in complex z plane; F, piece- 
wise-continuous line (F = r~ + ... + FN) ; 2hoh(s), width of inclusion in section s (ho = 
const); 2b, length of inclusion; 2a, period of complex potential W. 

lo 
2. 
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SOLVING A SET OF DIFFERENTIAL EQUATIONS OF HEAT AND 

ELECTRICAL TRANSFER 

I. A. Zhvaniya, M. Z. Maksimov, 
and G. A. Tkhor 

UDC 536.2.023 

Methods are proposed in this article for solving the first boundary-value problem 
for a system of nonlinear differential equations for heat and electrical transfer 
in the general one-dimensional case. 

i. It is known that the transfer of heat and charge in the media which possess thermo- 
electrical properties is governed by the equations of Maxwell, of heat conduction, and by 
the generalized Ohm's law. In the stationary case these equations can be written in the form 
[1, 2] 

div (• + JE --  J 7  (aT) = O, 

j : _ _ l  ( E - - a T T ) ,  d i v J = O ;  ( t )  
P 

the solution of the equations under appropriate boundary conditions determines completely the 
fundamental characteristics of a thermoelement -- the power generated W and the heat-flux den- 
sity q: 

W = - - I J E d v ,  q ~ - - •  (2) 

where T is temperature; E is the electric field intensity; ~(T) is the coefficient of ther- 
mo-emf; ~(T) is the coefficient of thermal conductivity; and p(T) is the coefficient of re- 
sistivity. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 32, No. 3, pp. 516-523, March, 
1977. Original article submitted July 23, 1975. 
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In a number of articles the determination of heat fluxes on the system boundaries has 
been considered in the case of given boundary temperatures [3-6]. For flat one-dimensional 
thermoelements approximate formulas have been obtained for the heat fluxes when the first- 
correction terms are retained and thermoelectrical effects reflected, though without a strong 
mathematical basis. 

2. In the present article methods are proposed for solving the system (i) for the gen- 

eral one-dimensional case when the sought functions depend on Ix] x = x~, where n is 
i=l 

the dimension of the space. 

In our case the system (i) becomes 

- -  x~-~• (7') + j2 (x) x"-~o (r )  - -  J (x) x " - ~  (7") d r  = ~  

.. d [xn-,j (x)] = o (x o < x <  x0, T (xo) = T~, T (xl) = T1, J (Xx) = J1, (3) 
dx 

where T(T) = T(da/dT) is the Thomson coefficient. Here and subsequently only the first bound- 
ary-value problem is considered. 

Dimensionless quantities are introduced by means of 

x T x (D ; ~ = - - , v -  , A ( y ) = - - ,  
x, T,. x (To) 

(T) p (T) J~ p (To) x~ 
13 (v) = ~ - ~ o ) '  v (y) = ~ ,  a~ = P (To) To x (To) 

~z ~ (To) To 
2 = -- Z (To) T O (4) 

p (To) x (T O 

as well as another independent variable, 

dx X u 
~ =  ~ ,  ~ -  - ,  

x ~  xl 
~~ 

( 5 )  

which result in 
d [A(y)  d Y ]  dY +a%l(y )=O,  

y (0) = 1, y (qO = Yl = T1 - -  p 

To 

Q = - - A  dy _ q~S(x) 
d~ A 

(6) 

(7) 

Here Q is the dimensionless flux; S(x) = ~2n-txn-*L 3-n is the area of current cross section; 
L is the length of the system in the perpendicular direction to the heat flow and current; 

A = ~ 2 ~ ? - 2 L ' - ~ z  (To) To. ( s )  

Equation (6) for the function Q = Q(y) can be reduced to an Abel equation of the second 
kind whose explicit solution in terms of quadratures can be obtained for only special forms 
of A(y), B(Y), and y(y); for example, when Ay/8 = const. 

In particular, if y = A = 1 and 8 = Bo = const, one finds directly from (6) 

a e x p [ a V ' - ~ o ~ ] - - I  [ a ] 

from which familiar results [7-8] can be obtained for the case of n = 1 or 2. 

It is of some importance to develop approximation methods to solve Eq. (6) without hav- 
ing to specify the functions A(y), 8(Y), and y(y). To this end the system (6) is now reduced 
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to a nonlinear integral equation. 
tions of ~, one obtains for y 

and, 

If provisionally one regards A, B, and y as known func- 

~l 'rl ' 

y =  1 - -aS , / f ' dq '~ l  ,I ~ 

0 

I) ~1 ' 

is tin" 
, 0 

-7 -  )l~ 

j 'dq'Aexp[a-]/~-]:--~dq" ] 
0 O 

l ] "  

d,]"yexp - - a V ~  ~ ~- 
k 

1)" 

1 + a "  dq ~ ?exp - - a l  
-=~ [3 (11) 

correspondingly, for Q 

ll  

' I Q = a ~ ! ? exp -- 
5 
0 

"0" 

[~ dq" ] dl]' --- 

ll • 
L 

0 

exp 
11 

0 

0 0 

/ X- 
tl  

The above equations have the following advantages: 

g"  I l l  

I 0 

(12) 

one is able, on the one hand, to ob- 
tain from them directly the familiar results (9)-(10) for the properties remaining constant 
and, on the other hand, they are very convenient in the case of arbitrary A(y), y(y), and 
B(Y) for finding the solution by any approximation method. 

Indeed, Eq. (12) can be written in the form 

Q=M(y ,  y~; Q)~--a~L~; Q) ~ M(y, 1; Q) 

where  
y,, 

, ,  [ M(y, y'; Q ) = e x p  a ] / ~ -  ~ , 
y"  

g" 

A? " 1 = -~M(y~, y'; Q)dy'; f(y; Q) y, , (14) 

i SAdy 
I 

which represents a functional equation for the unknown Q(y). To find the solution one can 
use here the method of successive approximations. If for the zeroth approximation one adopts 
the s o l u t i o n  o f  ou r  p r o b l e m  i n  which  t h e  t h e r m o e t e c t r i c a t  e f f e c t s  a r e  i g n o r e d  (a ,  Z + 0 ) ,  
that is, 

Yl 

Qo - 1 ! A@, 

1 

(15) 

then the k-th approximation is obtained from (13) and is equal to 

Q ~ = M ( y ,  y~; Qn-t)_--a~L(g; Qh-O+ M(y, 1; Q~-I) (16) 

Since each approximation satisfies the boundary conditions of the problem, the proposed iter- 
ation procedure must converge to the true solution. 

Since the flux Q is known, it is easy to obtain the sought temperature field in a quad- 
rature: 
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g 

f Ady' (17) 
0=--. Q 

1 

Thus, the method enables one to obtain the solution of the problem under investigation with 
any degree of accuracy. 

3. If the dimensionless parameter satisfies the inequality a < I, then the solution 
can also be sought in the form of a power series: 

V (% Z, a) = ~ a% (q, Z). (18)  

By substituting this expansion in (6) and setting the coefficients of different powers 
of a equal to zero, a system of differential equations is obtained for the expansion coeffi- 
cients ui(n, Z), uo(~,. Z) satisfying at the same time the original boundary conditions (6) 
while ui(n , Z), i~l is equal to zero: 

ui(O, Z ) :  u~(~l, Z):0. (19) 

Since the solution for the zeroth approximation is known, it is not difficult to write 
them down for i~l. The expressions are now given for the first three coefficients: 

A (Uo) duo -- G (gO , 
d~ ~1 

where G(y) 

u~ = l' Zz O (uo) % [p ( U o ) -  P (Yl)], 
A (uo) 6 (gl) 

1 ~ d lnA(uo)  G(Uo)~ll [O 
ul + (Uo) - -  �9 (YO], 

2 du o A (uo) G (ga) 
g 

= i A(x)dx is the Kirchhoff function; 

g 

�9 (y) = VZ-f~u~ (v) - -  g ( y ) ;  P (v) = j" [~ (x) dx; 

// 

- % ~V(x)A(x)dx; f(V---]-  
g (y) 6 (v~) 

1 

Y 

j' t (x) a (x) dx 
1 

g 

S A (x) dx 
1 

Knowing the temperature distribution, one can now find the heat flux: 

-- A @ = O0 § aO1 + a'O~ + 0 (aD, 
dn 

Oo = - -  A (Uo) du_~o = O (YO _ Qo, O~ = - -  
d~ ~1 d~ 

= - -  V ~ -  [ P  (uo) - -  ~19 (Yl)], 

O~ = - -  _ _  

[A (Uo) u,] = 

d [A(uo)u2+ l u ~  dA(u~ ] --dx3(tto)-}- (D(yl). 
d~l 2 du o 

(20) 

(21) 

(22) 

(23) 

It should be mentioned here that in [4] similar solutions are given for the flux with 
an accuracy up to quadratic terms in the current (au); however, in the expression for | a 
term which is quadratic in the Thomson effect was omitted. 

For the sake of comparison~ the expression is now given for the heat flux with an ac- 
curacy up to ~2 in the case of the properties of the material remaining unchanged (A = y = I, 
8 = 8o = const). By using the solution (i0), one obtains 

- - ~  a2 

~1 2~1 2-- 
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a"Z ~1~[3~ (1 --y~) -4- a~z[sg (1 --Y0(q --q~) % (24) 
+ - - ~  2~--Z-- 

It can easily be seen that formula 

maining constant. 

4. Moreover, the solution of system (6) can also be represented by a power series in 
the powers of q. Our attention is now turned to the Kirchhoff function; the system (6) now 
becomes 

d2G a | / ~ - ~  [GI dO 
�9 - - -  + a2y [O] = 0, 

dq 2 A [G] dq 

~ (25) 
G (01 = 0, G (q~) = I A ~) dy = G~ 

i 
Its solution is sought in the form of the following series: 

O (q) = G (n~ (0) --- , (26) 
n! 

!Z~O 

where the expansion coefficients G(n)(0) can be determined by using the boundary conditions 
and the main equation. 

It is not possible to write down explicitly the series (26) in the general case; how- 
ever, by retaining only the first three expansion terms one obtains 

G (q) : AT § B~ 2, (27) 

where 

(22) goes into (24) in the case of the properties re- 

2G 1 -+- n~a2? (1) 
A =  

a V ~  (I) 
2ni + n~ 

a(1)  
and in this case the heat flux is equal to 

dO Q- 
dn 

; B = A , ( 2 8 )  
2A(1) 2 

-- A -- 2Bq. (29) 

For a < i this expression with an accuracy up to ~z 2 becomes 

~11a~2~ ~ (1) Q _  Ot G t  a ] f ~ [ ~ ( 1 )  2~1--~1t _Fa~y(1)2q- -n~  Gt (30) 
71 71 A (I) 2ql 2 4A ~ (1) 

The f o r m u l a s  ( 2 8 ) - ( 3 0 )  e n a b l e  us  to  o b t a i n  an e x p l i c i t  r e l a t i o n  f o r  t h e  h e a t  f l u x  i n  
t e rms  o f  t h e  c o o r d i n a t e  q. 

5. V a r i o u s  methods  have  been  c o n s i d e r e d  above  f o r  s o l v i n g  t h e  sy s t em  of  e q u a t i o n s  ( 6 ) -  
( 7 ) ,  and s e v e r a l  a p p r o x i m a t e  r e l a t i o n s  have  been  o b t a i n e d  f o r  e v a l u a t i n g  t h e  t e m p e r a t u r e  and 
h e a t  f l u x e s  in  o n e - d i m e n s i o n a l  t h e r m o e l e m e n t s .  

We now p r o c e e d  to  t h e  e v a l u a t i o n  o f  power .  I t  f o l l o w s  f rom t h e  r e l a t i o n s  ( 1 ) - ( 2 )  t h a t  
To 

W = l i ~ (T) d T - -  12Rin t, (31) 

where I = j(x)S(x) is the total current in the system and Rint is the internal resistance of 
the thermoelement, which for one-dimensional systems is given by 

Xi Y~ 

Ri m =  D[x] S(x) Q(y) 
X o 1 

9 (To) 
~2 n-ILa-nx?-2 ' (3 3) 

where 

b = 

3 2 9  



that is, the internal resistance depends not only on the geometry of the element, but also 
on the temperature distribution. 

Approximate formulas are now found to compute Rin t by employing the previously obtained 
results for the heat~flux. 

By restricting our considerations to the first approximation, one obtains from (16) 

where 

Q = Mo (Y, Yl) [-- aO-Lo (y) + M o (y~, 1) (1 _ Lo (~)] G 2 

M o (y, 1) 
(34) 

y .  y. 

M~ Y")=exp [ --a]/-~Qo j f~dy]" G~ ~ j vAMo(yx, 
y,  ! 

by s u b s t i t u t i n g  (34) i n to  (32) and i n t e g r a t i n g ,  
ternal resistance: 

Yl 

~h t' Af y') dy; f (y) = -- -~ (y) dy; Gr. 
1 

(35) 

one obtains the following formula for the in- 

bQo ln[ l a2Lo(YOMo(Y, 1) 1 
Rint= - -  a-T Mo (Yl, 1)(1 @ a2Lo (y)) ' 

which can be used to obtain the volt--ampere characteristic of the thermoelements 

(36) 

To 

V = S or (T) dT --IRia t (37) 
T1 

(V is voltage) and to estimate its deviation from the straight line. 

For small a < i, by employing the expansions (18) and (21) and the formula (22), one ob- 
tains the following expressions to determine the internal resistance: 

~]1 Yl 

Rint=- Q0b J'~A[1--a01] =Qoob j',fA[ 1 .-{-attl-~Y-]dy.ay (38) 

1 1 

The f u n c t i o n  ( [ u : [ )  v a n i s h e s  a t  t he  i n t e g r a t i o n  l i m i t s  [ see  (19 ) ] ;  t h e r e f o r e ,  i t  r eaches  
i t s  maximum i n s i d e  t h i s  i n t e r v a l .  By e v a l u a t i n g  the  c o r r e c t i o n  to  the  r e s i s t a n c e  by the  
method of  s t e e p e s t  d e s c e n t ,  t h a t  i s ,  t ak ing  the  s lowly  va ry i ng  f u n c t i o n  u , h ( 3 y / ~ y ) / ( y -  1)" 
(y -- y , )  o u t s i d e  the  i n t e g r a l  s i gn  a t  the  maximum p o i n t  f o r  the  f u n c t i o n  (y -- y , ) ( y  -- 1) ,  
y* = (1 + y ~ ) / 2 ,  one o b t a i n s  

~ _  2ha (1 --Y0 [Ul AO?  ] (39) Rint= 
3Qo [ Oy J y=y* 

To f i nd  improved e s t i m a t e s  of  the  c o r r e c t i o n  one can use  the  expans ions  

A (y) = A (y*) + A '  (y*) ( y - -  y*) -~ . . . . .  1~ (y) = [3 (y*) + [ ~ ' 0 " )  ( y - -  y*) + �9 �9 �9 

and by retaining the principal terms only one finally obtains 

b(1--yl) l/-~aTl~ [~ 07] (40) 
Rint= R 

12 [A J-~y u=y* ' 
where 

Yl 

b S = Q-o vAay.  
1 

If one employs the solution (29), one can obtain the following formula for the internal 

resistance : 
Gz 

" ~[Ol4O (41) 
Rim = b 1 z B 2 -? 4AG 

0 

By employing this formula one can easily find an explicit formula for Rin t in terms of 
the system parameters if y[G] is known. 
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6. Thus, in the present article methods of solution have been given for the system (6)- 
(7) which enable one to find temperature fields and fluxes. 

With the aid of these methods, approximation formulas have been found for the main char- 
acteristics of a thermoelement: the heat flux and the internal resistance. 

It has been shown that in the previously proposed formulas for the heat flux a quadratic 
(in the Thomson effect) term is missing, and in the resistance a linear (in the current term) 
is also missing. The estimates show chac these effects may result in the deviation of the 
volt-- ampere characteristics from linear of several percent. 

NOTATION 

T, y, u, temperatures; q, Q, | heat fluxes; x, $, q, coordinates; ~, A, thermal con- 
ductivities; 0, Y, resistivities; ~, coefficient of thermo-emf; T, 8, Thomson coefficients; 
L, length; S, cross section; J, current density; I, total current; E, electric field inten- 
sity; W, power; V, voltage. 
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APPLICATION OF INFINITE SYSTEMS TO THE SOLUTION OF 

BOUNDARY-VALUE PROBLEMS OF STEADY THERMAL CONDUCTION 

IN NONUNIFORM MEDIA 

Yu. I. Malov and L. K. Martinson UDC 536.24 

A method of calculating the temperature field in nonuniform media is described. Ex- 
amples of the calculation of the temperature distribution for an exponential varia- 
tion of the thermal conductivity of the medium and also in a multilayer structure 
are presented. 

In the rectangular region ~{0 ~ x ~ l, 0 ~ y ~i} we will consider the boundary-value 
problem of steady thermal conduction [i] 

0 [h(x) Ou ] 02u (1) 
ox  7 x  + h (x) - -  - -  q~u = - -  f (x, y ) ,  Og 2 

U------O on 0~, (2) 
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